Review Quiz 2

Instructions. You have 20 minutes to complete this review quiz. You may use your calculator. You may not use any other materials. Put your answers on the separate answer form provided.

1. The tangent vector to the curve $\vec{r}(t)=\langle 2 t, \sin t, \cos t\rangle$ at $t=\pi$ is:
(a) $(2 \pi,-\pi, 0)$
$\vec{r}^{\prime}(t)=\langle 2, \cos t,-\sin t\rangle$
(b) $(2,-1,0)$
(c) $(2,0,1)$
(d) $(2 \pi, 0,1)$
tangent vector at $t=\pi: \vec{r}(\pi)=\langle 2,-1,0\rangle$
(e) $(2 \pi,-1,0)$
2. What is $\vec{r}(1)$, given $\vec{r}^{\prime}(t)=t^{2} \vec{i}+t^{3} \vec{j}$ and the initial condition $\vec{r}(0)=\vec{i}$?
(a) $\frac{1}{3} \vec{i}+\frac{1}{4} \vec{j}$
$\vec{r}(t)=\left\langle\frac{t^{3}}{3}+C_{1}, \frac{t^{4}}{4}+C_{2}\right\rangle$
(b) $\frac{4}{3} \vec{i}+\frac{1}{4} \vec{j}$
$\vec{r}(0)=\left\langle c_{1}, c_{2}\right\rangle=\langle 1,0\rangle \Rightarrow C_{1}=1$
(c) $\frac{2}{3} \vec{i}+\frac{1}{4} \vec{j}$
(d) $\frac{4}{3} \vec{i}+\frac{3}{4} \vec{j}$
$\Rightarrow \vec{r}(1)=\left\langle\frac{1}{3}+1, \frac{1}{4}\right\rangle=\left\langle\frac{4}{3}, \frac{1}{4}\right\rangle$
(e) $\frac{1}{3} \vec{i}+\frac{3}{4} \vec{j}$
3. Which one of the listed vector-valued functions defines a circle?
(a) $\vec{r}(t)=\langle 3 \cos (2 t), 3 \sin (2 t), 4\rangle$
(b) $\vec{r}(t)=\langle 3 \cos (2 t), 4 \sin (2 t), 0\rangle \quad$ circle of radius 3 , on the plane $z=4$
(c) $\vec{r}(t)=\langle 3 \cos (t), 3 \sin (t), 4 t\rangle$
(d) $\vec{r}(t)=\langle 3 \cos (t), 4 \sin (t), 0\rangle$
(e) $\vec{r}(t)=\left\langle 3 \cos ^{2}(t), 3 \sin ^{2}(t), 4 t\right\rangle$
4. The two lines

$$
\vec{r}_{1}(t)=\langle 1+4 t, 2+5 t, 3+6 t\rangle \quad \text { and } \quad \vec{r}_{2}(t)=\langle-6+7 t,-6+8 t,-6+9 t\rangle \quad\langle 7,8,9\rangle
$$

intersect at the point $(1,2,3)$. Which one of the listed vectors is perpendicular to the plane that contains both lines?
(a) $\langle 1,2,3\rangle \times\langle-6,-6,-6\rangle$
(b) $\langle 1,2,3\rangle \times\langle 7,8,9\rangle$
(c) $\langle 4,5,6\rangle \times\langle-6,-6,-6\rangle$
(d) $\langle 1,2,3\rangle \times\langle 4,5,6\rangle$
(e) $\langle 4,5,6\rangle \times\langle 7,8,9\rangle$
5. Find the length of the curve $\vec{r}(t)=\langle\sin (t), \cos (t), t \sqrt{3}\rangle$ from $t=0$ to $t=10$.
(a) $10+50 \sqrt{t}$
(b) $\cos (10)+\sin (10)+10 \sqrt{3}$
(c) $10+10 \sqrt{3}$
$\langle 4,5,6\rangle$

(d) 10
(e) 20

$$
\begin{aligned}
& \int_{0}^{10}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{10} \sqrt{\cos ^{2} t+\sin ^{2} t+3} d t \\
& \quad=\int_{0}^{10} \sqrt{4} d t=20
\end{aligned}
$$

